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Abstract
The multiple beneficial effects on human health of the 
short-chain fatty acid butyrate, synthesized from non-
absorbed carbohydrate by colonic microbiota, are well 
documented. At the intestinal level, butyrate plays a 
regulatory role on the transepithelial fluid transport, 
ameliorates mucosal inflammation and oxidative status, 
reinforces the epithelial defense barrier, and modulates 
visceral sensitivity and intestinal motility. In addition, 
a growing number of studies have stressed the role 
of butyrate in the prevention and inhibition of colorec-
tal cancer. At the extraintestinal level, butyrate exerts 
potentially useful effects on many conditions, includ-
ing hemoglobinopathies, genetic metabolic diseases, 
hypercholesterolemia, insulin resistance, and ischemic 
stroke. The mechanisms of action of butyrate are differ-
ent; many of these are related to its potent regulatory 
effects on gene expression. These data suggest a wide 
spectrum of positive effects exerted by butyrate, with a 
high potential for a therapeutic use in human medicine. 
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INTRODUCTION
The development of  the intestinal ecosystem is crucial 
for many gastrointestinal functions and body health. The 
intestinal ecosystem essentially comprises the epithelium, 
immune cells, enteric neurons, intestinal microflora, and 
nutrients. The coordinate interplay between all these 
components is the object of  intensive research efforts to 
design new strategies for many intestinal and extraintes-
tinal diseases. In this context, short-chain fatty acids (SC-
FAs), produced by intestinal microflora, represent a clear 
example of  the importance of  the intestinal ecosystem. 
SCFAs are organic acids produced by intestinal microbial 
fermentation of  mainly undigested dietary carbohydrates, 
specifically resistant starches and dietary fiber, but also in 
a minor part by dietary and endogenous proteins. SCFAs 
are 2-carbon to 5-carbon weak acids, including acetate 
(C2), propionate (C3), butyrate (C4), and valerate (C5). 
SCFAs are essentially produced in the colon. The ratio of  
SCFA concentrations in the colonic lumen is about 60% 
acetate, 25% propionate, and 15% butyrate. As a result of  
increasing concentrations of  acidic fermentation products, 
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the luminal pH in the proximal colon is lower. This pH 
seems to boost the formation of  butyrate, as mildly acidic 
pH values allow butyrate-producing bacteria to compete 
against Gram-negative carbohydrate-utilizing bacteria, such 
as Bacteroides spp.[1]. The ability to produce butyrate is widely 
distributed among the Gram-positive anaerobic bacteria 
that inhabit the human colon. Butyrate-producing bacteria 
represent a functional group, rather than a coherent phy-
logenetic group. Numerically, two of  the most important 
groups of  butyrate producers appear to be Faecalibacterium 
prausnitzii, which belongs to the Clostridium leptum (or clos-
tridial cluster Ⅳ) cluster, and Eubacterium rectale/Roseburia 
spp., which belong to the Clostridium coccoides (or clostridial 
cluster XIVa) cluster of  firmicute bacteria[2]. Butyrate is the 
major energy source for colonocytes and is involved in the 
maintenance of  colonic mucosal health[3]. Recently several 
intestinal and extraintestinal effects of  butyrate have been 
demonstrated (Figure 1 and Table 1). This review is fo-
cused on new evidence for possible applications of  butyr-
ate in human medicine. 

EFFECTS OF BUTYRATE AT THE 
INTESTINAL LEVEL
Effects on transepithelial ion transport
Potentially, SCFAs are absorbed by each intestinal seg-
ment, as demonstrated in animal models and human 
volunteers. The colonocytes absorb butyrate and other 
SCFAs through different mechanisms of  apical mem-
brane SCFA uptake, including non-ionic diffusion, 
SCFA/HCO3

- exchange, and active transport by SCFA 
transporters. The transport proteins involved are mono-
carboxylate transporter isoform 1 (MCT1), which is 
coupled to a transmembrane H+-gradient, and SLC5A8, 
which is Na+-coupled co-transporter[3,4]. The absorption 
of  these fatty acids has a significant impact on the ab-
sorption of  NaCl and on the electrolyte balance general-
ly[5]. In particular, butyrate is able to exert a powerful pro-
absorptive stimulus on intestinal NaCl transport and an 
anti-secretory effect towards Cl- secretion. The powerful 
regulatory pro-absorptive/anti-secretory effects induced 
by butyrate on the transepithelial ion transport occurs 
through several mechanisms: (1) Stimulation of  NaCl ab-
sorption by the action of  two coupled transport systems 
on the intestinal brush border: Cl-/HCO3

- and Na+/H+ 

and Cl-/butyrate and Na+/H+; and (2) inhibition of  Cl- 
secretion by blocking the activity of  the cotransporter 
Na-K-2Cl (NKCC1) on the enterocyte basolateral mem-
brane. In vitro studies have shown that butyrate has an in-
hibitory effect on Cl- secretion induced by prostaglandin 
E2, cholera toxin, and phosphocholine. This effect is due 
to reduced production of  intracellular cAMP secondary 
to the expression and regulation of  adenylate cyclase[4]. 
Comparison studies showed that the pro-absorptive and 
anti-secretory effects of  butyrate are significantly higher 
than those of  all other SCFAs[6]. Clinical studies in chil-

dren with acute diarrhea caused by V. cholerae showed 
a reduction in stool volume and a more rapid recovery 
in patients who received oral rehydration therapy in ad-
dition to resistant starch, a precursor of  butyrate, in the 
diet[7,8]. These results were confirmed in other forms of  
infectious diarrhea in children and in animal models stud-
ies[9,10]. Moreover, butyrate therapy is beneficial in patients 
affected by Congenital Chloride Diarrhea (CLD)[11,12]. 
This rare genetic disease is caused by mutations in the 
gene encoding the solute-linked carrier family 26-member 
A3 (SLC26A3) protein, which acts as a plasma membrane 
anion exchanger for Cl- and HCO3

[13]. The mechanism 
underlying this therapeutic effect could be related, at 
least in part, to stimulation of  the Cl-/butyrate exchanger 
activity[11]. It is also possible that butyrate could reduce 
mistrafficking or misfolding of  the SLC26A3 protein, 
as demonstrated for other molecules involved in tran-
sepithelial ion transport[14]. Alternatively, butyrate may 
enhance gene expression: the SLC26A3 gene contains 
a 290-bp region between residues -398 and -688 that is 
crucial for high-level transcriptional activation induced by 
butyrate. This may explain the variable response of  pa-
tients affected by CLD to butyrate[12]. In fact, depending 
on the patient’s genotype, mutations in the above-men-
tioned regulatory regions of  the SLC26A3 gene could af-
fect the gene transcription rate. It is also conceivable that 
other channels could be involved in the therapeutic effect 
of  butyrate in CLD. SLC26A3, like other components of  
the SLC26 family, interacts with cystic fibrosis transmem-
brane conductance regulator (CFTR)[15,16]. The interaction 
between CFTR and these components is mediated by 
binding of  the regulatory domain of  CFTR to the sul-
fate transporter and anti sigma factor antagonist (STAS) 
domain of  SLC26. The interaction is enhanced by phos-
phorylation of  the regulatory domain by protein kinase 
A[17] and is modulated by PDZ-binding scaffold proteins. 
An important consequence of  this interaction is that 
SLC26 anion exchange activity is enhanced when CFTR 
is activated by phosphorylation. Moreover, the two genes 
regulate each other: the overexpression of  SLC26A3 
or -A6 causes upregulation of  CFTR and vice versa[18]. In 
patch-clamp experiments, protein kinase A-stimulated 
CFTR channel activity was six-fold higher in HEK293 
cells co-expressing both SCL26 exchanger and CFTR 
than in HEK293 cells expressing CFTR alone[12,15,16,18]. 
Mutations may impair the interactions between channels 
and thus reduce the effect of  butyrate therapy. Interest-
ingly, it has been demonstrated that butyrate can act by 
different mechanisms in in vitro models of  cystic fibrosis: 
it can increase the expression of  the apical epithelial 
membrane of  the CFTR, and it can act as a “chaperone-
like” molecule, as shown in the ΔF508del CFTR cell line 
model[19]. Similar mechanisms could occur in CLD. Lastly, 
Clausen et al[20] demonstrated that antibiotic-associated 
diarrhea was related to reduced fecal concentrations and 
production rates of  butyrate. Their results suggest that 
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the antibiotic-associated diarrhea might be secondary to 
impaired colonic fermentation in otherwise disposed sub-
jects, resulting in decreased butyrate and fluid absorption. 
In this case, the administration of  butyrate could also al-
leviate the symptoms associated with antibiotic use.

Effects on cell growth and differentiation
Several epidemiological studies support the role of  di-
etary fiber in the protection against colorectal cancer[21-26]. 
Different mechanisms have been proposed for fiber’s can-
cer preventive properties: reduction in transit time of  the 
feces in the gut, which reduces exposure of  the mucosa 
to luminal carcinogens; absorption of  bile acids, biogenic 
amines, bacterial toxins, and production of  butyrate. Most 
of  the anticarcinogenic effects of  butyrate are observed 
in in vitro carcinoma cell lines. In these models, addition 
of  butyrate leads to inhibition of  proliferation, induction 
of  apoptosis, or differentiation of  tumor cells[27-30]. Butyr-
ate’s anticarcinogenic effects are in contrast with the ef-
fects of  this compound in normal enterocytes. In fact, it 
has been shown that butyrate stimulates the physiological 
pattern of  proliferation in the basal crypt in the colon, 

whereas it reduces the number and the size of  aberrant 
crypt focus, which are the earliest detectable neoplastic le-
sions in the colon[31]. These contradictory patterns of  bu-
tyrate represents the so called “butyrate paradox”[27]. An 
important mechanism by which butyrate causes biological 
effects in colon carcinoma cells is the hyperacetylation 
of  histones by inhibiting histone deacetylase (HDAC). 
This compensates for an imbalance of  histone acetyla-
tion, which can lead to transcriptional dysregulation and 
silencing of  genes that are involved in the control of  cell 
cycle progression, differentiation, apoptosis and cancer 
development[32,35]. In particular, in human colon cancer 
cell lines butyrate, acting as HDAC inhibitor, increases 
the p21 (WAF1) gene expression by selectively regulating 
the degree of  acetylation of  the gene-associated histones, 
and induces G1 cell cycle arrest[36]. A novel contributory 
mechanism to the chemopreventive effect of  butyrate is 
the downregulation of  the key apoptotic and angiogenesis 
regulator Neuropilin-1 (NRP-1), which has been shown 
to promote tumor cell migration and survival in colon 
cancer in response to vascular endothelial growth factor 
(VEGF) binding[37]. Several reports have shown that the 
apoptosis triggered by butyrate in vitro is associated with 
dysregulation of  Bcl2 family proteins, especially upregu-
lation of  BAK and downregulation of  BclxL[38,39], rather 
than cellular damage. A study by Thangaraju et al suggests 
a novel mode of  action of  butyrate in the colon involv-
ing GPR109A, a G-protein–coupled receptor for nicotin-
ate[40,41], which recognizes butyrate with low affinity. This 
receptor is expressed in the normal colon on the lumen-
facing apical membrane of  colonic epithelial cells, but is 
silenced in colon cancer via DNA methylation. Thanga-
raju et al[42] showed that inhibition of  DNA methylation 
in colon cancer cells induces GPR109A expression and 
that activation of  the receptor causes tumor cell–specific 
apoptosis. Butyrate is an inhibitor of  HDAC, but apopto-
sis induced by activation of  GPR109A with its ligands in 
colon cancer cells does not involve inhibition of  histone 
deacetylation. The primary changes in this apoptotic pro-
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Table 1  Main butyrate effects potentially useful in human 
medicine

Intestinal level Extraintestinal level

Ion absorption Insulin sensitivity
Cell proliferation      Cholesterol synthesis
Cell differentation Energy expenditure
Intestinal barrier function    Ammonia scavenger
Immune-regulation Stimulation of β-oxidation of very long chain 

fatty acids and peroxisome proliferation 
Oxidative stress CFTR function 
Intestinal motility Neurogenesis 
Visceral perception and 
rectal compliance

HbF production

CFTR: Cystic fibrosis transmembrane conductance regulator; HbF: Butyr-
ate to increase fetal hemoglobin.
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Intestinal barrier function Inflammatory and oxidative status Cell growth and differentiation

Butyrate

Immune regulationIon absorption Intestinal motility and visceral perception

Figure 1  The multiple effects of butyrate at intestinal level.



cess include downregulation of  Bcl-2, Bcl-xL, and cyclin 
D1 and upregulation of  death receptor pathway. More-
over, a recent study suggested that the protective role of  
dietary fiber, and its breakdown product butyrate, against 
colorectal cancer could be determined by a modulation 
of  canonical Wnt signaling, a pathway constitutively acti-
vated in the majority of  colorectal cancers[43]. Butyrate is 
recognized for its potential to act on secondary chemo-
prevention, by slowing growth and activating apoptosis 
in colon cancer cells[44], but it can also act on primary 
chemoprevention. The mechanism proposed is the tran-
scriptional upregulation of  detoxifying enzymes, such as 
glutathione-S-transferases (GSTs). This modulation of  
genes may protect cells from genotoxic carcinogens, such 
as H2O2 and 4-hydroxynonenal (HNE)[45,46].

Effects on inflammatory and oxidative status
Butyrate has a role as an anti-inflammatory agent, primar-
ily via inhibition of  nuclear factor κB (NF-κB) activation in 
human colonic epithelial cells[47], which may result from the 
inhibition of  HDAC. NF-κB regulates many cellular genes 
involved in early immune inflammatory responses, includ-
ing IL-1b, TNF-α, IL-2, IL-6, IL-8, IL-12, inducible nitric 
oxide synthase (iNOS), cyclooxygenase-2 (COX-2), inter-
cellular adhesion molecule-1 (ICAM-1), vascular cellular 
adhesion molecule-1 (VCAM-1), T cell receptor-α (TCR-α), 
and MHC class Ⅱ molecules[48-50]. The activity of  NF-κB is 
frequently dysregulated in colon cancer[51,52] and in inflam-
matory bowel diseases (IBDs), such as ulcerative colitis 
(UC) and Crohn’s disease (CD)[53-55]. In CD patients, butyr-
ate decreases pro-inflammatory cytokine expression via in-
hibition of  NF-κB activation and IκBα degradation[53]. The 
upregulation of  peroxisome proliferator-activated receptor 
γ (PPARγ) a nuclear receptor highly expressed in colonic 
epithelial cells, and the inhibition of  IFNγ signaling, are 
another two of  butyrate’s anti-inflammatory effects[56,57]. 
Butyrate can act on immune cells through specific G-pro-
tein-coupled receptors (GPRs) for SCFAs, GPR41 (or 
FFA3) and GPR43 (or FFA2), which are both expressed 
on immune cells, including polymorphonuclear cells, sug-
gesting that butyrate might be involved in the activation of  
leucocytes[58]. The possible immune-modulatory functions 
of  SCFAs are highlighted by a recent study on GPR43 -/- 
mice. These mice exhibit aggravated inflammation, related 
to increased production of  inflammatory mediators and 
increased immune cell recruitment[59].

Most clinical studies analyzing the effects of  butyrate on 
inflammatory status focused on UC patients. Hallert et al[60]  
instructed 22 patients with quiescent UC to add 60 g oat 
bran (corresponding to 20 g dietary fiber) to their daily 
diet. Four weeks of  this treatment resulted in a significant 
increase of  fecal butyrate concentration and in a signifi-
cant improvement of  abdominal symptoms. In a double 
blind, placebo-controlled multicenter trial, Vernia et al[61] 
treated 51 patients with active distal UC with rectal en-
emas containing either 5-aminosalicylic acid (5-ASA) or 

5-ASA plus sodium butyrate (80 mmol/L, twice a day). 
The combined treatment with topical 5-ASA plus sodium 
butyrate significantly improved the disease activity score 
more than 5-ASA alone. These and other intervention 
studies[62-64] suggested that the luminal administration of  
butyrate or stimulation of  luminal butyrate production by 
the ingestion of  dietary fiber results in an amelioration of  
the inflammation and symptoms in UC patients. 

Numerous studies have reported that butyrate me-
tabolism is impaired in intestinal inflamed mucosa of  pa-
tients with IBD. Recent data show that butyrate deficiency 
results from the reduction of  butyrate uptake by the 
inflamed mucosa through downregulation of  MCT1. The 
concomitant induction of  the glucose transporter GLUT1 
suggests that inflammation could induce a metabolic 
switch from butyrate to glucose oxidation. Butyrate trans-
port deficiency is expected to have clinical consequences. 
Particularly, the reduction of  the intracellular availability 
of  butyrate in colonocytes may decrease its protective ef-
fects toward cancer in IBD patients[65].

Limited evidence from pre-clinical studies shows that 
oxidative stress in the colonic mucosa can be modulated 
by butyrate. Oxidative stress is involved in both inflam-
mation[66] and the process of  initiation and progression of  
carcinogenesis[67]. During oxidative stress there is an im-
balance between the generation of  reactive oxygen species 
(ROS) and the antioxidant defense mechanisms, leading 
to a cascade of  reactions in which lipids, proteins, and/or 
DNA may get damaged. In healthy humans, it has been 
demonstrated that locally administered butyrate in physi-
ological concentrations increased the antioxidant GSH 
and possibly decreased ROS production, as indicated by 
a decreased uric acid production[68]. As the human colon 
is continuously exposed to a variety of  toxic stimuli, en-
hanced butyrate production in the colon could result in an 
enhanced resistance against toxic stimuli, thus improving 
the barrier function. This might be relevant for the treat-
ment of  gastrointestinal disorders, such as post-infectious 
irritable bowel syndrome (IBS), microscopic colitis, IBD, 
and diversion colitis.

Effects on non-specific intestinal defense mechanisms
The main components of  nonspecific intestinal barrier 
defense mechanisms are the mucous layer covering the 
epithelium, the production of  antimicrobial peptides, and 
tight junctions, which protect the gastrointestinal mucosa 
against pathogens. Evidence suggests a role for butyrate in 
reinforcing the colonic defense barrier. Butyrate stimulates 
MUC2 mucin production in a human colonocytes cell 
line (LS174T). The increased expression of  MUC2 gene, 
and the induction of  mucin synthesis, can affect the mu-
cous layer leading to enhanced protection against luminal 
agents[69,70]. 

Combined with other components of  the innate im-
mune system, antimicrobial peptides (AMPs) form the 
first line of  defense against infections. The two major 
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classes of  AMPs found in humans are defensins and 
cathelicidins. While the intestine expresses numerous de-
fensins, LL-37 is the only cathelicidin-derived peptide ex-
pressed in humans. Several studies demonstrated an effect 
of  butyrate on LL-37 gene expression and proposed that 
the molecular mechanism may be linked to an increase in 
histone acetylation and mitogen-activated protein (MAP) 
kinase signaling[71-75]. The use of  HDAC inhibitors, such 
as butyrate, to enhance the expression of  the LL-37 gene 
may become a novel approach for strengthening innate 
immunity to treat or prevent intestinal infections. 

Butyrate also regulates the colonic defense barrier 
through its effects on intestinal permeability, which de-
pends on its concentration. At low concentrations, butyrate 
induces a concentration-dependent reversible decrease in 
permeability in intestinal cell line models[76,77]. The effect of  
butyrate on the intestinal epithelial permeability involves 
the assembly of  tight junctions via AMP-activated protein 
kinase (AMPK)[78].

Effects on visceral perception and intestinal motility
Little is known about the environmental and nutritional 
regulation of  the enteric nervous system (ENS), which 
controls gastrointestinal motility. Butyrate regulates co-
lonic mucosa homeostasis and can modulate neuronal ex-
citability. Soret et al[79] investigated the effects of  butyrate 
on the ENS and colonic motility, and showed, in vivo and 
in vitro, that butyrate significantly increased the propor-
tion of  choline acetyltransferase (ChAT), but not nitric 
oxide synthase (nNOS) immunoreactive myenteric neu-
rons. Butyrate increases the cholinergic-mediated colonic 
circular muscle contractile response ex vivo. The authors 
suggest that butyrate might be used, along with nutrition-
al approaches, to treat various gastrointestinal motility 
disorders associated with inhibition of  colonic transit. 

A recent study by Van Houten et al[80] shows that in-
traluminal administration of  a physiologically relevant 
dose (50 to 100 mmol/L-) of  butyrate into the distal 
colon increases compliance and decreases pain, urge, and 
discomfort measured with a rectal barostat procedure 
in healthy subjects. This study suggests a potential ben-
eficial effect of  butyrate in disorders that are associated 
with visceral hypersensitivity, such as IBS and infantile 
colics, and provides a basis for future trials with dietary 
modulation resulting in intracolonic butyrate production 
in both healthy and IBS subjects. The decrease in visceral 
perception induced by butyrate treatment could be due 
to an increased 5-HT release, as previously suggested by 
others[81]. Another possible mechanism by which butyrate 
could affect visceral perception is the previous reported 
inhibition of  histone deacetylase. In fact, Chen et al[82] 
showed that these inhibitors induce microglyal apoptosis 
and attenuate inflammation-induced neurotoxicity in rats, 
which may affect visceral perception. Butyrate has been 
reported to induce enhancement of  colonic motility via 
the release of  5-HT[83]. In functional studies, butyrate and 
propionate induced phasic and tonic contractions in rat 

colonic circular muscle. The dose-dependent contractile 
effect occurred only when SCFAs were applied on the 
mucosal side and disappeared in mucosal free prepara-
tions, suggesting the presence of  sensory mechanisms 
near the epithelium[84,85].

EFFECTS AT THE EXTRAINTESTINAL 
LEVEL
Hemoglobinopathies
Clinical trials in patients with sickle cell disease and 
β-thalassemia confirmed the ability of  butyrate to in-
crease fetal hemoglobin (HbF) production[86-89]. Butyrate 
is an inducer of  HbF through an epigenetic regulation of  
fetal globin gene expression via HDAC inhibition, result-
ing in global histone hyperacetylation, including nucleo-
somes at the γ-globin promoters[90]. Other experiments 
have shown that butyrate can cause a rapid increase in the 
association of  γ-globin mRNA with ribosomes[91]. Other 
authors have demonstrated activation of  p38 mitogen-
activated protein kinases (MAPK) and cyclic nucleotide 
signaling pathways in association with butyrate induction 
of  HbF[92]. Taken together, these studies suggest that 
global histone hyperacetylation induced by HDAC inhi-
bition is not the unique mechanism underlying butyrate 
stimulation of  HbF.

Genetic metabolic diseases
Sodium phenylbutyrate 4 (4-PBA) was approved by the 
Food and Drug Administration (FDA) for use in patients 
with urea cycle enzyme deficiency, in which it acts as a 
scavenger of  ammonia. Indeed, 4-PBA is oxidized to 
phenylacetate, which binds to glutamine and determines 
the urinary excretion. In patients with ornithine transcar-
bamylase deficiency, the use of  4-PBA allows for better 
metabolic control and increased intake of  natural protein 
in the diet[93].

The possible use of  butyrate in the treatment of  X-
linked Adrenoleukodystrophy (X-ALD), a disorder of  
peroxisomes characterized by altered metabolism and accu-
mulation of  very long chain fatty acids, has also been stud-
ied. Sodium phenylbutyrate 4 induces, in vitro on fibroblasts 
from patients with X-ALD and in vivo in X-ALD knockout 
mice, an increase in β-oxidation of  very long chain fatty ac-
ids and peroxisome proliferation[94].

Hypercholesterolemia
Under normal lipidemic conditions, the liver is the most 
important site of  cholesterol biosynthesis, followed by the 
intestine. Biosynthesis in the liver and intestine account 
for about 15% and 10%, respectively, of  the total amount 
of  cholesterol biosynthesis each day[95,96]. In hypercholes-
terolemia, when cholesterol biosynthesis is suppressed in 
most organs by fasting, the intestine becomes the major 
site of  cholesterol biosynthesis, and its contribution can 
increase up to 50%. Importantly, recent evidence shows 
that the global effect of  butyrate is to downregulate the 
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expression of  nine key genes involved in intestinal choles-
terol biosynthesis, potentially inhibiting this pathway[97].

Obesity and insulin resistance
Dietary supplementation with butyrate can prevent and 
treat diet-induced obesity and insulin resistance in mouse 
models. After a 5-wk treatment with butyrate, obese mice 
lost 10.2% of  their original body weight. Consistent with 
the change in body weight, fat content was reduced by 
10%. Furthermore, fasting glucose was reduced by 30%, 
insulin resistance was reduced by 50%, and intraperitoneal 
insulin tolerance was improved significantly by butyrate. 
The mechanism of  butyrate action is related to promotion 
of  energy expenditure and induction of  mitochondrial 
function. Stimulation of  peroxisome proliferator-activated 
receptor (PPAR) coactivator (PGC-1α) activity has been 
suggested as the molecular mechanism of  butyrate. Activa-
tion of  AMPK and inhibition of  histone deacetylases may 
contribute to the PGC-1α regulation. These data suggest 
that butyrate may have potential application in the preven-
tion and treatment of  metabolic syndrome in humans[98].
 
Ischemic stroke
Cerebral ischemia enhances neurogenesis in neurogenic 
and non-neurogenic regions of  the ischemic brain of  adult 
animal models. A recent study demonstrated that post-
insult treatment with sodium butyrate stimulated the incor-
poration of  bromo-2’-deoxyuridine (BrdU) in the ischemic 
brain of  rats subjected to permanent cerebral ischemia. 
Butyrate treatment also increased the number of  cells ex-
pressing polysialic acid-neural cell adhesion molecule, nes-
tin, glial fibrillary acidic protein, phospho-cAMP response 
element-binding protein (CREB), and brain-derived neuro-
trophic factor (BDNF) in various brain regions after cere-
bral ischemia[99]. Furthermore, extensive co-localization of  
BrdU and polysialic acid-neural cell adhesion molecule was 
observed in multiple regions after ischemia, and butyrate 
treatment upregulated protein levels of  BDNF, phospho-
CREB, and glial fibrillary acidic protein. Intraventricular 
injection of  K252a, a tyrosine kinase B receptor antago-

nist, markedly reduced the long-lasting behavioral benefits 
of  butyrate, inhibiting cell proliferation, nestin expression, 
and CREB activation[99]. Together, these results suggest 
that butyrate-induced cell proliferation, migration, and dif-
ferentiation require BDNF-tyrosine kinase B signaling and 
may contribute to long-term beneficial effects of  butyrate 
after ischemic injury. 

ISSUES RELATED TO THE CLINICAL USE 
OF BUTYRATE 
Data from literature and clinical experience of  several 
research groups show a wide spectrum of  possibilities 
for potential therapeutic use of  butyrate by oral admin-
istration without having serious adverse events (Table 2). 
Some butyrate-based products are marketed, but their 
spread is still very limited and greatly understaffed in view 
of  the wide spectrum of  possible indications, especially 
in chronic diseases, where it is possible to predict a last-
ing use of  the compound. The main problem is of  the 
availability of  formulations of  butyrate that can be easily 
administered orally, in particular for pediatric patients, 
and to the extremely poor palatability of  the products 
available on the market. The unpleasant taste and odor 
make oral administration of  butyrate extremely difficult, 
especially in children. Thus, new formulations of  butyrate 
with a better palatability, which can be easily administered 
orally, are needed. Another possible solution could be the 
modulation of  intestinal microflora by probiotics. Probi-
otics are live and viable microorganisms, which, if  given in 
adequate amounts, confer a beneficial effect to the host. 
Probiotic microorganisms generate small molecular meta-
bolic byproducts, referred to as “postbiotics”, which exert 
beneficial regulatory influence on host biological func-
tions, including butyrate[100]. 

CONCLUSION
The SCFA butyrate, a main end product of  microbial 
fermentation of  dietary fibers in the human intestine, 
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Table 2  Possible therapeutic indications of butyrate in gastroenterology

Functions Therapeutic indications Potential applications

Regulation of fluid and electrolyte 
uptake

Acute gastroenteritis[9,10]       Irritable bowel syndrome[80]

       Cholera[7,8]         Aspecific chronic diarrhea[4] 

Congenital chloride diarrhea[11,12]         Traveler’s diarrhea[4]

       Antibiotic associated diarrhea[4,20]

        Chronic secretory diarrhea[4] 

     Cystic fibrosis[14,19]

     Mucosal atrophy in malnutrition[101]

Effects on proliferation and 
differentiation of epithelial 
intestinal cells

Acute gastroenteritis[9,10]        Mucosal atrophy in total parenteral nutrition[101,102]

IBD[53-65]        Mucosal atrophy in radiotherapy or chemotherapy[101]

         Short bowel syndrome and intestinal failure[103]

       Prevention of colorectal cancer[46]

       Intestinal polyposis[104]

Anti-inflammatory effect IBD[53-65]        Pouchitis[105]

        Allergic colitis[106]

Berni Canani R et al . Butyrate effects at the intestinal and extraintestinal level

IBD: Inflammatory bowel disease.



plays an important role in the maintenance of  intestinal 
homeostasis and overall health status. The effects exerted 
by butyrate are multiple and involve several distinct mech-
anisms of  action. Its well-known epigenetic mechanism, 
through the inhibition of  HDACs, results in the regulation 
of  gene expression and in the control of  cell fate. At the 
intestinal level, butyrate exerts multiple effects such as the 
prevention and inhibition of  colonic carcinogenesis, the 
improvement of  inflammation, oxidative status, epithelial 
defense barrier, and the modulation of  visceral sensitivity 
and intestinal motility. At the extraintestinal level, potential 
fields of  application for butyrate seem to be the treatment 
of  sickle cell disease, β-thalassemia, cystic fibrosis, urea 
cycle enzyme deficiency, X-linked adrenoleukodystrophy, 
hypercholesterolemia, obesity, insulin resistance, and isch-
emic stroke.

In conclusion, a growing number of  studies have 
revealed new mechanisms and effects of  butyrate with 
a wide range of  potential clinical applications from the 
intestinal tract to peripheral tissues. However, more clini-
cal studies to elucidate the role of  butyrate in health and 
diseases and new solutions for easier administration are 
needed.
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